ESERCIZI SUI MOTORI ALTERNATIVI A COMBUSTIONE INTERNA

Un motore alternativo con 4 cilindri ha una cilindrata totale di 0,999 dm³, un rapporto corsa diametro di 0,93 e funziona a regime a 3000 giri/min.

Determinare la CORSA e la VELOCITÀ MEDIA DEL PISTONE

Sono dati: z = 4 numero di cilindri $z \cdot V = 0,999 \ dm^3$ <u>cilindrata totale</u> con <u>V = cilindrata unitaria</u> $\frac{s}{D} = 0,93 \quad rapporto \quad \frac{corsa \ pistone}{Diametro \ cilindro \ (alesaggio)}$

Si calcola la cilindrata unitaria data dal rapporto tra la cilindrata totale e il numero di cilindri

$$V = \frac{z \cdot V}{z} = \frac{0.999 \ dm^3}{4} = 0.24975 \ dm^3 = 0.00024975 \ m^3 \qquad \underline{cilindrata \ unitaria}$$

Ma la cilindrata unitaria è data dal volume generato dallo stantuffo durante la sua corsa, quindi

$$V = \frac{\pi \cdot D^{2}}{4} \cdot s \quad con \quad D^{2} = \left(\frac{s}{0.93}\right)^{2} \quad quindi \ si \ può \ scrivere \ V = \frac{\pi \cdot \left(\frac{s}{0.93}\right)^{2}}{4} \cdot s$$
da cui si calcola la CORSA
$$s = \sqrt[3]{\frac{4V \cdot (0.93)^{2}}{\pi}} = \sqrt[3]{\frac{4 \times 0.00024975 \times (0.93)^{2}}{3.14}} = 0.065 \ m$$

Il pistone durante la sua corsa ha una velocità variabile; QUELLA MEDIA si calcola, come già visto per le pompe alternative, con la relazione

$$v_m = 2s \cdot \frac{n}{60} = 2 \times 0,065 \times \frac{3000}{60} = 6,5 \frac{m}{s}$$

Un motore alternativo con 6 cilindri ha una cilindrata totale di 9,5 dm³, un rapporto di compressione di 16 e raggio di manovella 70 mm.

Determinare il VOLUME DI SPAZIO MORTO e l'ALESAGGIO

Sono dati: z = 6 numero di cilindri $z \cdot V = 9,5 \ dm^3$ <u>cilindrata totale</u> con <u>V = cilindrata unitaria</u> $\rho = 16$ $r = 70 \ mm$

SVOLGIMENTO

Si calcola la cilindrata unitaria data dal rapporto tra la cilindrata totale e il numero di cilindri

$$V = \frac{z \cdot V}{z} = \frac{9.5 \ dm^3}{6} = 1,583 \ dm^3 = 0,001583 \ m^3$$
 cilindrata unitaria

Dalla definizione di rapporto di compressione si calcola il VOLUME DI SPAZIO MORTO, infatti

$$\rho = \frac{V + V_0}{V_0} = 1 + \frac{V}{V_0} \implies V_0 = \frac{V}{\rho - 1} = \frac{1,583 \text{ dm}^3}{16 - 1} = 0,105 \text{ dm}^3 \text{ Volume di spazio morto}$$

La cilindrata unitaria è data dal volume generato dallo stantuffo durante la sua corsa, quindi

$$V = \frac{\pi \cdot D^2}{4} \cdot s \quad \Rightarrow \quad D = \sqrt{\frac{4V}{\pi \cdot s}} \qquad con \quad s = 2r = 2 \times 70 \, mm = 140 \, mm = 0,14 \, m$$

Pertanto l'ALESAGGIO vale:
$$D = \sqrt{\frac{4V}{\pi \cdot s}} = \sqrt{\frac{4 \times 0,001583 \, m^3}{3,14 \times 0,14}} = 0,12 \, m$$

Un motore alternativo a benzina, a 4 tempi, con 4 cilindri, ha una cilindrata totale di 1770 cm³; lavora con una pressione media effettiva di 7,2 bar e funziona a regime a 5000 giri/min. Il motore ha un consumo orario di 21,24 kg/h di combustibile con potere calorifico inferiore di 43000 kJ/kg.

Determinare la POTENZA EFFETTIVA, la COPPIA, la CORSA, l'ALESAGGIO, la VELOCITÀ MEDIA del pistone, il CONSUMO SPECIFICO di COMBUSTIBILE, il RENDIMENTO GLOBALE del motore.

Sono dati: z = 4 numero di cilindri, $\tau = 4$ numero di tempi $z \cdot V = 1770 \ cm^3$ <u>cilindrata totale</u> con <u>V = cilindrata unitaria</u> $p_{me} = 7,2 \ bar, \quad n = 5000 \ \frac{giri}{min}$ $G_h = 21,24 \ \frac{kg}{h}, \quad Pci = 43000 \ \frac{kJ}{kg}$

SVOLGIMENTO

Dai dati a disposizione si può subito calcolare la POTENZA EFFETTIVA

$$P_{e} = p_{me} \cdot z \cdot V \cdot \frac{n}{1000 \cdot 60 \cdot \frac{\tau}{2}} = 720000 \ Pa \times 0,00177 \ m^{3} \times \frac{5000}{1000 \times 60 \times \frac{4}{2}} = 53,1 \ kW$$

e nota la potenza effettiva anche la COPPIA MOTRICE

$$P_e = \frac{C \cdot n}{9549} \implies C = \frac{9549 \, P_e}{n} = \frac{9549 \times 53,1 \, kW}{5000} = 101,41 \, N \cdot m$$
 Coppia motrice

Per il calcolo della CORSA e dell'ALESAGGIO, grandezze che sono tipiche del cilindro, si calcola prima la cilindrata unitaria: $V = \frac{z \cdot V}{z} = \frac{1770 \text{ cm}^3}{4} = 442,5 \text{ cm}^3$

Quindi dalla definizione di cilindrata unitaria, fissato il rapporto corsa diametro pari a 1,1 (vedi manuale pag. 1038: per autoveicoli $\frac{s}{D} = 0.65 \div 1,1$), si calcola

$$V = \frac{\pi \cdot D^2}{4} \cdot s = \frac{\pi \cdot D^3}{4} \cdot 1,1 \qquad con \quad s = 1,1 \ D \quad avendo \ fissato \quad \frac{s}{D} = 1,1$$
 da cui
$$D = \sqrt[3]{\frac{4 \ V}{1,1 \ \pi}} = \sqrt[3]{\frac{4 \times 442,5 \ cm^3}{1,1 \times 3,14}} = 8,00 \ cm \ , \qquad s = 1,1 \ D = 1,1 \times 8 \ cm = 8,8 \ cm$$

La VELOCITÀ MEDIA del pistone vale $v_m = 2s \cdot \frac{n}{60} = 2 \times 0,088 \text{ m} \times \frac{5000}{60} = 14,67 \frac{m}{s}$

Per motori a benzina a 4 tempi valori orientativi della velocità media del pistone: $v_m = 9 \div 16 \frac{m}{s}$

Il CONSUMO SPECIFICO DI COMBUSTIBILE è direttamente determinabile essendo noti il consumo orario e la potenza effettiva erogata dal motore (fare attenzione alle unità di misura)

$$q_b = \frac{G_h}{P_e} = \frac{21,24 \frac{kg}{h}}{53,1 \ kW} = 0,400 \frac{kg}{kW \cdot h} = 0,4 \times \frac{1 \ kg}{1000W \times 3600 \ s} = 1,1 \times 10^{-7} \frac{kg}{J}$$

mentre il rendimento globale vale: $\eta_g = \frac{1}{q_b \cdot Pci} = \frac{1}{1,1 \times 10^{-7} \frac{kg}{J} \times 43 \times 10^6 \frac{J}{kg}} = 0,211$

Eseguire il dimensionamento di massima di un MOTORE A SCOPPIO a 4 TEMPI che deve azionare una pompa centrifuga per acqua, con le seguenti caratteristiche:

Portata $Q = 42 \ \text{Ns}$ Prevalenza manometrica $H_m = 64 \ \text{m}$ Numero di Giri $n = 3600 \ \text{giri/min}$ rendimento $\eta = 0.81$

SVOLGIMENTO

Dato l'elevato numero di giri della pompa è ragionevole pensare ad un **accoppiamento diretto** (MOTOPOMPA). In questo caso non essendoci nessuna trasmissione tra gli alberi del motore e della pompa, la POTENZA ASSORBITA DALLA POMPA sarà uguale ALLA POTENZA EFFETTIVA SULL'ALBERO MOTORE. Pertanto:

$$n_{POMPA} = n_{MOTORE}$$
 $P_{ASSORBITA \ dalla \ POMPA} = P_{EFFETTIVA \ del \ MOTORE}$

La POTENZA ASSORBITA DALLA POMPA vale:

$$P_a = \frac{\rho \cdot g \cdot H_m \cdot Q}{1000 \ \eta} = \frac{9.81 \times 64 \times 0.042}{0.81} \cong 32.6 \ kW$$

Quindi il motore dovrà erogare, a 3600 giri/min, una POTENZA EFFETTIVA di 32,6 kW.

$$P_e = p_{me} \cdot z \cdot V \cdot \frac{n}{1000 \cdot 60 \cdot \frac{\tau}{2}} = p_{me} \cdot z \cdot V \cdot \frac{n}{120000} \quad essendo \quad \tau = 4$$

assumendo da tabelle il valore plausibile di **8 bar** per la **pressione media effettiva**, si può calcolare la CILINDRATA TOTALE:

$$z \cdot V = \frac{120000 P_e}{p_{me} \cdot n} = \frac{120000 \times 32,6 \ kW}{800000 \ Pa \times 3600} = 0,001358 \ m^3 = 1358 \ cm^3$$

Ipotizzando di utilizzare un motore a 4 cilindri si calcola prima la cilindrata unitaria e quindi i valori della CORSA e dell'ALESAGGIO

$$V = \frac{z \cdot V}{z} = \frac{1358 \text{ cm}^3}{4} = 339,5 \text{ cm}^3$$

Fissato il rapporto corsa diametro pari a 0,8 , si calcolano ALESAGGIO del cilindro e CORSA del pistone

$$V = \frac{\pi \cdot D^2}{4} \cdot s = \frac{\pi \cdot D^3}{4} \cdot 0.8$$
 con $s = 0.8$ D avendo fissato $\frac{s}{D} = 0.8$

da cui
$$D = \sqrt[3]{\frac{4 V}{0.8 \pi}} = \sqrt[3]{\frac{4 \times 339.5 \ cm^3}{0.8 \times 3.14}} \cong 8.15 \ cm$$
, $s = 0.8 \ D = 0.8 \times 8.15 \ cm = 6.52 \ cm$

Esercizi proposti sui motori alternativi a combustione interna

➤ Per un motore DIESEL veloce a 4 tempi, a 4 cilindri sono noti:

 $\begin{array}{lll} \text{numero di giri} & n = 3100 \text{ giri/min} \\ \text{consumo orario di combustibile} & G_h = 35,5 \text{ kg/h} \\ \text{alesaggio} & D = 140 \text{ mm} \\ \text{corsa del pistone} & s = 155 \text{ mm} \\ \text{pressione media effettiva} & p_{me} = 6,7 \text{ bar} \\ \text{potere calorifico inferiore} & P_{ci} = 42300 \text{ kJ/kg}. \end{array}$

Determinare:

(risultati: $zV = 9539,32 \text{ cm}^3$; $q_b = 0,215 \text{ kg/(kWh)}$; $\eta_g = 0,394$)

▶ Un motore a carburazione a 4 tempi, a 4 cilindri sviluppa una potenza effettiva $P_e = 85$ kW funzionando a n = 4800 giri/min, con un consumo specifico di combustibile $q_b = 0.31$ kg/(kWh). Sono noti $p_{me} = 7.2$ bar, velocità media pistone $v_m = 13.8$ m/s, potere calorifico inferiore del combustibile $P_{ci} = 43500$ kJ/kg.

Determinare:

IL CONSUMO DI COMBUSTIBILE IN 45 min di funzionamento

▶ Un motore DIESEL a 4 tempi, a 4 cilindri sviluppa una potenza effettiva $P_e = 38 \text{ kW}$ funzionando a n = 3400 giri/min, con un consumo specifico di combustibile $q_b = 0,275 \text{ kg/(kWh)}$. Sono noti pressione media indicata $p_{mi} = 7,8$ bar, alesaggio D = 85 mm, Corsa s = 90 mm, potere calorifico inferiore del combustibile $P_{ci} = 41800 \text{ kJ/kg}$.

Determinare:

(risultati: C = 106,72 Nm; $G_h = 10,45 \text{ kg/h}$; $\eta_m = 0,84$; $P_i = 45,22 \text{ kW}$; $\eta_g = 0,313$)

▶ Un motore DIESEL a 4 tempi, a 6 cilindri genera una coppia motrice di 420 Nm sviluppando una potenza effettiva $P_e = 99,26$ kW. Il diametro dei cilindri è D = 90 mm, la velocità media del pistone $v_m = 12,5$ m/s e il consumo di combustibile in 40 min è 28,5 kg.

Determinare:

Un motore DIESEL a 4 tempi, a 4 cilindri sviluppa una potenza effettiva $P_e = 38 \text{ kW}$ funzionando a n = 3400 giri/min, con un consumo specifico di combustibile $q_b = 0.275 \text{ kg/(kWh)}$. Sono noti pressione media indicata $p_{mi} = 7.8 \text{ bar}$, alesaggio D = 85 mm, Corsa s = 90 mm, potere calorifico inferiore del combustibile $P_{ci} = 41800 \text{ kJ/kg}$.

Determinare:

LA COPPIA MOTRICE	C
LA POTENZA INDICATA	P_{i}
IL RENDIMENTO MECCANICO	η_{m}
IL CONSUMO ORARIO	G_h
IL RENDIMENTO GLOBALE DEL MOTORE	η_g

SVOLGIMENTO

La COPPIA MOTRICE sull'albero motore è direttamente calcolabile dai dati assegnati, infatti dalla definizione di potenza in funzione della coppia motrice

$$P_e = \frac{C \cdot n}{9549}$$
 (kW) $\xrightarrow{\text{si calcola}}$ $C = \frac{9549 \ P_e}{n} = \frac{9549 \times 38 \ kW}{3400} = 106,72 \ N \cdot m \ \text{coppia motrice}$

Il RENDIMENTO GLOBALE si può determinare dall'espressione del consumo specifico di combustibile, infatti da

$$q_b = \frac{1}{\eta_g \cdot Pci} \xrightarrow{\text{si calcola}} \eta_g = \frac{1}{q_b \cdot Pci} = \frac{1}{\frac{0.275 \text{ kg}}{3600 \text{ kJ}} \times 41800 \frac{\text{kJ}}{\text{kg}}} = 0.313 \quad \underline{\text{rendimento globale}}$$

e dall'altra espressione del consumo specifico di combustibile, si può calcolare il CONSUMO ORARIO

$$q_b = \frac{G_h}{P_e} \xrightarrow{da\ cui\ si\ calcola} G_h = q_b \cdot P_e = 0.275 \frac{kg}{kW \cdot h} \times 38\ kW = 10.45 \frac{kg}{h}$$
 consumo orario

Per il calcolo del RENDIMENTO MECCANICO ricorriamo alla sua definizione e ad una ulteriore sua elaborazione

$$\eta_m = \frac{L_e}{L_i} = \frac{p_{me} \cdot V}{p_{mi} \cdot V} = \frac{p_{me}}{p_{mi}}$$
 dove il valore della pressione media effettiva si può calcolare dall'espressione della potenza effettiva

$$P_{e} = p_{me} \cdot V \cdot z \cdot \frac{n}{1000 \cdot 60 \cdot \frac{\tau}{2}} \quad con \begin{cases} z \cdot V = 4 \cdot \frac{\pi \cdot D^{2}}{4} \cdot s = 3,14 \times (0,085 \, m)^{2} \times 0,090 \, m = 0,00204 \, m^{3} \\ \frac{\tau}{2} = \frac{4}{2} = 2 \end{cases}$$

da cui si calcola
$$p_{me} = \frac{120000 \ P_e}{V \cdot z \cdot n} = \frac{120000 \times 38 \ kW}{0,00204 \ m^3 \times 3400} \cong 657440 \ Pa \cong 6,57 \ bar$$
 Quindi:
$$\eta_m = \frac{p_{me}}{p_{mi}} = \frac{6,57 \ bar}{7,8 \ bar} \cong 0,84 \quad \underline{rendim \ ento \ meccanico}$$

Il calcolo della POTENZA INDICATA è possibile solo quando è noto il rendimento indicato, calcoliamolo

$$\eta_g = \eta_i \cdot \eta_m \xrightarrow{da \ cui \ si \ calcola} \eta_i = \frac{\eta_g}{\eta_m} = \frac{0.313}{0.84} \cong 0.373 \quad ren \ dim \ ento \ indicato$$

e dalla definizione di rendimento indicato si può scrivere

$$\eta_{i} = \frac{L_{i}}{Q_{1}} = \frac{L_{i}}{m_{c} \cdot Pci} \xrightarrow{\text{moltiplicando e dividendo per il tempo } t} \eta_{i} = \frac{\frac{L_{i}}{t}}{\frac{m_{c}}{t} \cdot Pci}$$
 ma in quest'ultima

espressione
$$\begin{cases} \frac{L_i}{t} = P_i & \underline{potenza\ indicata} \\ \frac{m_c}{t} = G_h \left(\frac{kg}{s}\right) = 10,45 \frac{kg}{3600\ s} = 0,0029 \frac{kg}{s} & \underline{portata\ massica\ di\ combustibile} \end{cases}$$

Pertanto la POTENZA INDICATA vale

$$\eta_{i} = \frac{P_{i}}{0,0029 \cdot Pci} \xrightarrow{da \ cui \ si \ calcola} P_{i} = \eta_{i} \cdot 0,0029 \cdot Pci = 0,373 \times 0,0029 \frac{kg}{s} \times 41800 \frac{kJ}{kg} \cong 45,22 \ kW$$

Si riportano in tabella i parametri caratteristici dei motori alternativi a combustione interna: dati da utilizzare quando sono richieste delle scelte.

Parametri caratteristici dei motori endotermici.

Impiego		Motori per autoveicoli			Motori lenti	
Ciclo		Otto	Otto (gas)	Diesel	Otto (gas)	Diesel
Pressione di compress.	(bar)	8,5/13	12/14	35/45	10/18	30/40
Pressione di combust.	(bar)	38/52	40/50	55/70	20/40	60/70
Pressione media effettiva	(bar)	6,5/10	5/6,5	5/7,5	4/6,5	4,5/7
Rapporto di compressione		6/9	7/10	14/22	6/10	12/14
Temper. fine compress.	(°C)	600/650	680/750	850/1000	400/600	850/1000
Temper, combustione	(°C)	2000/2500	1 600	1 800	1 000/1 500	1 800
Temper. gas scarico	(°C)	650/750	650/750	450/600	500/650	400/600
Consumo combust. (g	/kWh)	270/435	_	215/300	-	205/245
N 10 10 100 1000 00 10	(kW/I)	15/40	11/18	10/22(2T)	0,9/3,3	1,1/3,3
(per 1 litro di cilindrata)		0.00/0.10	0.07/0.00	0.00/0.00	0.00/0.00	0.41/0.24
Rendimento totale		0,30/0,19	0,27/0,20	0,38/0,23	0,28/0,23	0,41/0,34
Numero di giri (gi	ri/min)	3600/6000	3400/4600	1700/4000	100/600	100/500
Velocità media di stantuffo	(m/s)	9/14	9/13	8,5/13	3/6	4,5/6

Per quanto riguarda il rapporto corsa/diametro questi sono gli orientamenti:

- per MOTORI A BENZINA di più recente costruzione $\frac{s}{D} = 0.85 \div 0.95$ (motori a *corsa corta*); quando questo rapporto è uguale a 1, ovvero corsa = alesaggio, il motore si dice quadrato;
- per MOTORI DIESEL 4 TEMPI il rapporto è sottoquadro $\frac{s}{D} = 1,1 \div 1,4$ ottimale per consumo e sollecitazioni dinamiche.

🖔 Di un motore a carburazione a 4 tempi, con 3 cilindri sono noti

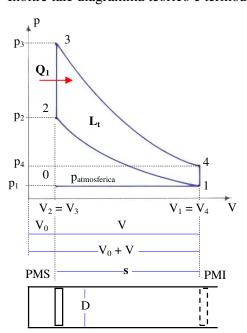
Alesaggio	D = 80 mm
Corsa	$s = 80 \text{ mm} (s = D \rightarrow \text{MOTORE QUADRATO})$
Rapporto di compressione	$\rho = 8$
Temperatura di aspirazione	$T_1 = 300 \text{ K}$
Rapporto di combustione	$\beta = 2,6$
Rendimento meccanico	$\eta_{\rm m}=75\%$
Pressione media indicata	$p_{mi} = 5.3 \text{ bar}$
Potere calorifico comb.	Pci = 43000 kJ/kg
Numero di giri	n = 4000 giri/min

Determinare: i valori di PRESSIONE, VOLUME e TEMPERATURA nei punti caratteristici del diagramma teorico di funzionamento e le VARIAZIONI DI ENERGIA INTERNA; il RENDIMENTO INDICATO; il RENDIMENTO GLOBALE; la POTENZA EFFETTIVA; la COPPIA ALL'ALBERO; il **consumo specifico** di combustibile; il CONSUMO ORARIO.

SVOLGIMENTO

Calcolo di p, V, T

Il diagramma teorico di funzionamento è quello in figura; in esso si suppone che la miscela gassosa (**fluido operante nel ciclo**) sia un GAS IDEALE con $R = 287 \, \frac{J}{kg \cdot K}$, $c_V = 713 \, \frac{J}{kg \cdot K}$, k = 1,4. Inoltre tale diagramma teorico è termodinamicamente simile al ciclo Otto.



V è la CILINDRATA UNITARIA che assume valore

$$V = \frac{\pi \cdot D^2}{4} \cdot s = \frac{3,14 \times (0,8 \, dm)^2}{4} \cdot 0,8 \, dm \cong 0,4 \, dm^3$$

Dalla definizione di rapporto di compressione si calcola il VOLUME DI SPAZIO MORTO

$$\rho = \frac{V + V_0}{V_0} = 1 + \frac{V}{V_0} \implies V_0 = \frac{V}{\rho - 1} = \frac{0.4 \ dm^3}{8 - 1} = 0.057 \ dm^3$$

Guardando il diagramma si capisce che è possibile calcolare i VOLUMI in tutti i punti caratteristici, infatti

$$V_1 = V_4 = (V + V_0) = 0.457 \text{ dm}^3$$

$$V_2 = V_3 = V_0 = 0.057 \text{ dm}^3$$

Applicando l'equazione di stato del gas ideale nello stato di equilibrio 1 (ricordando che teoricamente l'aspirazione avviene a pressione atmosferica) si può calcolare il VOLUME MASSICO DELLA MISCELA:

$$p_1 \cdot V_1 = R \cdot T_1 \rightarrow V_1 = \frac{R \cdot T_1}{p_1} = \frac{287 \times 300}{101325} \cong 0.850 \frac{m^3}{kg}$$

e quindi LA MASSA DELLA MISCELA:
$$m = \frac{V_1}{V_1} = \frac{0,000457 \text{ m}^3}{0,850 \frac{\text{m}^3}{kg}} \cong 0,00054 \text{ kg}$$

• Utilizzando le equazioni della trasformazione ADIABATICA 1-2 si calcolano temperatura e pressione nello stato di equilibrio 2 (ricordare che $\frac{V_1}{V_2} = \frac{V_1}{V_2}$ e $\rho = \frac{V_1}{V_2}$)

$$T_{1} \cdot \nu_{1}^{k-1} = T_{2} \cdot \nu_{2}^{k-1} \rightarrow T_{2} = T_{1} \cdot \left(\frac{\nu_{1}}{\nu_{2}}\right)^{k-1} = T_{1} \cdot \left(\frac{V_{1}}{V_{2}}\right)^{k-1} = T_{1} \cdot \left(\rho\right)^{k-1} = 300 \times (8)^{1,4-1} \cong 689 \ K$$

$$T_{1} \cdot p_{1}^{\frac{1-k}{k}} = T_{2} \cdot p_{2}^{\frac{1-k}{k}} \rightarrow p_{2} = p_{1} \cdot \frac{1-k}{k} \frac{T_{1}}{T_{2}} = 1,01 \ bar \times \frac{1-1,4}{1,4} \frac{300}{689} \cong 18,6 \ bar$$

• Ricordando la definizione di rapporto di combustione: **rapporto tra le temperature dopo e prima la somministrazione di calore**, si calcola la temperatura nello stato di equilibrio 3

$$\beta = \frac{T_3}{T_2} \rightarrow T_3 = \beta \cdot T_2 = 2,6 \times 689 K \cong 1791 K$$

 Utilizzando l'equazione della trasformazione ISOMETRICA 2-3 si calcola la pressione nello stato di equilibrio 3

$$\frac{p_3}{T_3} = \frac{p_2}{T_2} \rightarrow p_3 = p_2 \cdot \frac{T_3}{T_2} = p_2 \cdot \beta = 18,6 \ bar \times 2,6 \cong 48,4 \ bar$$

• Utilizzando le equazioni della trasformazione ADIABATICA 3-4 si calcolano temperatura e pressione nello stato di equilibrio 4 (ricordare che $\frac{V_3}{V_4} = \frac{V_3}{V_4}$ $e^{-\frac{1}{\rho}} = \frac{V_3}{V_4}$)

$$T_{4} \cdot v_{4}^{k-1} = T_{3} \cdot v_{3}^{k-1} \longrightarrow T_{4} = T_{3} \cdot \left(\frac{v_{3}}{v_{4}}\right)^{k-1} = T_{3} \cdot \left(\frac{V_{3}}{V_{4}}\right)^{k-1} = T_{3} \cdot \left(\frac{1}{\rho}\right)^{k-1} = 1791 \times \left(\frac{1}{8}\right)^{1,4-1} \cong 780 \ K$$

$$T_{4} \cdot p_{4}^{\frac{1-k}{k}} = T_{3} \cdot p_{3}^{\frac{1-k}{k}} \longrightarrow p_{4} = p_{3} \cdot \frac{1-k}{k} \sqrt{\frac{T_{3}}{T_{4}}} = 48,4 \ bar \times \frac{1-1,4}{1,4} \sqrt{\frac{1791}{780}} \cong 2,64 \ bar$$

> Calcolo variazioni di energia interna

Ricordando che **l'energia interna è una funzione di stato** e che inoltre, per il gas ideale, **dipende solo dalla temperatura**, è possibile calcolare per ognuna delle trasformazioni la relativa variazione di energia interna, in quanto sono note le temperature in ogni stato di equilibrio, la massa della miscela e il valore del calore specifico a volume costante.

Transformazione 1-2:
$$U_2 - U_1 = m \cdot c_V \cdot (T_2 - T_1) = 0,00054 \ kg \times 713 \ \frac{J}{kg \cdot K} \times (689 \ K - 300 \ K) \cong 150 \ J$$

Transformazione 2-3: $U_3 - U_2 = m \cdot c_V \cdot (T_3 - T_2) = 0,00054 \ kg \times 713 \ \frac{J}{kg \cdot K} \times (1791 \ K - 689 \ K) \cong 424 \ J$

Transformazione 3-4: $U_4 - U_3 = m \cdot c_V \cdot (T_4 - T_3) = 0,00054 \ kg \times 713 \ \frac{J}{kg \cdot K} \times (780 \ K - 1791 \ K) \cong -389 \ J$

Transformazione 4-1: $U_1 - U_4 = m \cdot c_V \cdot (T_1 - T_4) = 0,00054 \ kg \times 713 \ \frac{J}{kg \cdot K} \times (300 \ K - 780 \ K) \cong -185 \ J$

Chiaramente <u>sommando algebricamente le variazioni di energia interna</u> in tutte le <u>trasformazioni il risultato è zero</u>, perché dopo un ciclo il sistema ritorna nello stato iniziale e quindi riassume gli stessi valori delle variabili termodinamiche. (**provare per credere**).

> Calcolo rendimento indicato

Calcoliamolo utilizzando la sua definizione: $\eta_i = \varepsilon_b \cdot \eta_t$ in questa

$$\begin{cases} \varepsilon_{b} = \frac{L_{i}}{L_{t}} & con \qquad L_{i} = p_{mi} \cdot V = 530000 \ Pa \times 0,0004 \ m^{3} = 212 \ J \\ \eta_{t} = \frac{L_{t}}{Q_{1}} = \eta_{OTTO} = 1 - \frac{1}{\rho^{k-1}} = 1 - \frac{1}{8^{1,4-1}} \cong 0,56 \quad \Rightarrow \quad L_{t} = \eta_{t} \cdot Q_{1} = \eta_{t} \cdot m \cdot c_{V} \cdot (T_{3} - T_{2}) = \eta_{t} \cdot (U_{3} - U_{2}) \\ L_{t} = \eta_{t} \cdot (U_{3} - U_{2}) = 0,56 \times 424 \ J \cong 237,4 \ J \end{cases}$$

Nota: nella trasformazione isometrica 2-3 il calore scambiato $Q_1 = Q_{23} = \Delta U = U_3 - U_2$ perché il lavoro scambiato nella isometrica $L_{12} = 0$ (basta applicare alla trasformazione 2-3 il 1° principio della termodinamica per rendersene conto).

Pertanto:

$$\begin{cases} \varepsilon_b = \frac{L_i}{L_t} = \frac{212 J}{237,4 J} \cong 0.89 \\ \eta_t \cong 0.56 \end{cases} \Rightarrow \eta_i = \varepsilon_b \cdot \eta_t = 0.89 \times 0.56 \cong 0.50$$

Calcolo rendimento globale

Dalla sua definizione: $\eta_g = \eta_i \cdot \eta_m = 0.50 \times 0.75 \cong 0.37$

Per rispondere agli altri quesiti basta applicare direttamente le relative relazioni che definiscono ognuna delle grandezze: tutte le grandezze necessarie sono note o vengono man mano calcolate, pertanto non hanno bisogno di alcun commento.

> Calcolo potenza effettiva

$$P_{e} = \eta_{m} \cdot p_{mi} \cdot V \cdot \frac{z \cdot n}{1000 \cdot 60 \cdot \frac{\tau}{2}} = 0,75 \times 530000 \ Pa \times 0,0004 \ m^{3} \times \frac{3 \times 4000}{120000} \cong 16 \ kW$$

> Calcolo coppia all'albero

$$P_e = \frac{C \cdot n}{9549} (kW) \rightarrow C = \frac{9549 P_e}{n} = \frac{9549 \times 16 kW}{4000} \cong 38.2 N \cdot m$$

➤ Calcolo consumo specifico di combustibile

$$q_b = \frac{1}{\eta_g \cdot Pci} = \frac{1}{0.37 \times 43000 \frac{kJ}{kg}} = 0.000063 \frac{kg}{kJ} \cong 0.226 \frac{kg}{kW \cdot h}$$

> Calcolo consumo orario

$$G_h = q_b \cdot P_e = 0.226 \frac{kg}{kW \cdot h} \times 16kW \cong 3.62 \frac{kg}{h}$$

🕏 Per un motore DIESEL veloce a 4 tempi, a 4 cilindri sono noti:

numero di giri n = 3100 giri/min (MOTORE DIESEL VELOCE)

 $\begin{array}{lll} \text{consumo orario di combustibile} & G_h = 35,5 \text{ kg/h} \\ \text{alesaggio} & D = 140 \text{ mm} \\ \text{corsa del pistone} & s = 155 \text{ mm} \\ \text{pressione media effettiva} & p_{me} = 6,7 \text{ bar} \\ \text{potere calorifico inferiore} & P_{ci} = 42300 \text{ kJ/kg}. \end{array}$

Determinare:

La cilindrata totale del motore zV Il consumo specifico di combustibile q_b Il rendimento globale del motore η_g

SVOLGIMENTO

> Calcolo cilindrata totale

La CILINDRATA TOTALE è data dal prodotto della cilindrata unitaria (cilindrata di un cilindro) per il numero dei cilindri del motore; in questo caso

$$V = \frac{\pi \cdot D^{2}}{4} \cdot s = \frac{3,14 \times (14 \text{ cm})^{2}}{4} \times 15,5 \text{ cm} = 2384,83 \text{ cm}^{3} \quad \underline{\text{cilindrata unitaria}}$$

$$z \cdot V = 4 \times 2384,83 \text{ cm}^{3} = 9539,32 \text{ cm}^{3} \quad \text{cilindrata TOTALE}$$

Calcolo consumo specifico di combustibile

Il consumo specifico di combustibile è la massa di combustibile che occorre bruciare per produrre il calore necessario per ottenere il lavoro effettivo di 1 J, ma rappresenta anche la massa di combustibile consumata in 1 h per ogni kW di potenza effettiva erogata dal motore; da questa seconda definizione si può scrivere

$$q_b = \frac{G_h}{P_e} \quad con \quad P_e = p_{me} \cdot V \cdot z \cdot \frac{n}{60000 \cdot \frac{\tau}{2}} = 670000 \ Pa \times 0,009539 \ m^3 \times \frac{3100}{120000} \cong 165,1 \ kW$$

quindi
$$q_b = \frac{G_h}{P_e} = \frac{35,5 \frac{kg}{h}}{165,1 kW} = 0.215 \frac{kg}{kW \cdot h}$$

Calcolo rendimento globale

Essendo noti il consumo specifico di combustibile e il potere calorifico inferiore del combustibile si calcola con la relazione (attenzione alle unità di misura)

$$\eta_{g} = \frac{1}{q_{b} \cdot Pci} \quad con \quad \begin{cases} q_{b} = 0.215 \frac{kg}{kW \cdot h} = 0.215 \frac{1 \ kg}{1000 \ W \times 3600 \ s} = 6 \times 10^{-8} \frac{kg}{J} \\ Pci = 42300 \frac{kJ}{kg} = 42300000 \frac{J}{kg} = 4.23 \times 10^{7} \frac{J}{kg} \end{cases}$$

$$Quindi \quad \eta_{g} = \frac{1}{6 \times 10^{-8} \frac{kg}{J} \times 4.23 \times 10^{7} \frac{J}{kg}} = 0.394$$

 t Di un motore DIESEL marino a 4 tempi, a 6 cilindri sono noti: n = 115 giri/min (MOTORE LENTO), consumo orario di combustibile G_h = 212 kg/h, pressione media indicata p_{mi} = 6,18 bar, alesaggio D = 620 mm, corsa s = 975 mm, potere calorifico inferiore del combustibile P_{ci} = 42900 kJ/kg, rendimento meccanico $η_m$ = 0,85.

Determinare:

- \triangleright la MASSIMA TEMPERATURA raggiunta nel diagramma teorico di funzionamento noti il rapporto di compressione $\rho = 14$ e il rapporto di combustione $\beta = 2,64$;
- ➤ la POTENZA EFFETTIVA, il RENDIMENTO INDICATO, il RENDIMENTO GLOBALE, il CONSUMO SPECIFICO di combustibile e la MASSA DI GASOLIO PER CICLO;
- eseguire il dimensionamento di massima della pompa d'iniezione.

SVOLGIMENTO

Calcolo di T_{max}

3

 $\mathbf{L_t}$

press. atmosferica

CILINDRATA V

patm

 V_0

PMS

Il diagramma teorico di funzionamento è quello in figura; in esso si suppone che l'aria (**fluido operante nel ciclo**) sia un GAS IDEALE con $R = 287 \frac{J}{kg \cdot K}$, k = 1,4, e che l'aspirazione dell'aria

avvenga a pressione atmosferica e temperatura di 15°C.

Inoltre tale diagramma teorico è termodinamicamente simile al ciclo Diesel con

$$p_1 = 101325 \text{ Pa}, \qquad T_1 = 288 \text{ K}$$

La TEMPERATURA MASSIMA viene raggiunta nel punto di equilibrio 3, dopo la fase di **iniezione e combustione** (fase 2-3), quindi

$$T_{\text{max}} = T_3$$
 Ricordiamo che $\rho = \frac{V_1}{V_2} = \frac{V_1}{V_2} = \frac{V + V_0}{V_0} = 14$

Scrivendo l'equazione di stato per il gas ideale nello stato d'equilibrio 1, si può determinare il volume massico

$$p_1 \cdot v_1 = R \cdot T_1 \xrightarrow{\text{da cui si calcola}} v_1 = \frac{R \cdot T_1}{p_1} = \frac{287 \times 288}{101324} \cong 0.816 \frac{m^3}{kg}$$

e dalla equazione della trasformazione adiabatica 1-2, determinare il valore della pressione nello stato d'equilibrio 2

$$p_1 \cdot v_1^k = p_2 \cdot v_2^k \rightarrow p_2 = p_1 \cdot \left(\frac{v_1}{v_2}\right)^k = p_1 \cdot (\rho)^k = 101325 \times (14)^{1.4} \cong 4076580 \ Pa$$

Dalla definizione di rapporto di compressione si può determinare il volume massico nello stato di equilibrio 2: $\rho = \frac{v_1}{v_2} \rightarrow v_2 = \frac{v_1}{\rho} = \frac{0.816}{14} \approx 0.0583 \frac{m^3}{kg}$ e scrivendo l'equazione di stato per il gas

ideale nello stato d'equilibrio 2, si può determinare la temperatura in tale punto

$$p_2 \cdot v_2 = R \cdot T_2 \xrightarrow{\text{da cui si calcola}} T_2 = \frac{p_2 \cdot v_2}{R} = \frac{4076580 \times 0,0583}{287} \cong 828 \text{ K}$$

Infine dalla definizione di rapporto di combustione: $\beta = \frac{T_3}{T_2} \rightarrow T_3 = \beta \cdot T_2 = 2,64 \times 828 K \cong 2153 K$

> Calcolo della potenza effettiva

Calcoliamo prima la cilindrata unitaria: $V = \frac{\pi \cdot D^2}{4} \cdot s = \frac{3,14 \times (0,62 \, m)^2}{4} \times 0,975 \, m = 0,29436 \, m^3$

Pertanto, direttamente dalla relazione della potenza

$$P_{e} = \eta_{m} \cdot p_{mi} \cdot V \cdot \frac{z \cdot n}{1000 \cdot 60 \cdot \frac{\tau}{2}} = 0.85 \times 618000 \ Pa \times 0.29436 \ m^{3} \times \frac{6 \times 115}{120000} \cong 889 \ kW$$

➤ Calcolo del rendimento indicato e del rendimento globale

Dalla sua definizione $\eta_i = \frac{L_i}{Q_1} = \frac{p_{mi} \cdot V}{m_c \cdot Pci}$ dove m_c è la massa di combustibile iniettato ogni ciclo

Il calcolo di m_c richiede il seguente ragionamento:

- se G_h è il consumo orario di combustibile $\Rightarrow \frac{G_h}{z}$ è il consumo orario per 1 cilindro
- se n è il numero di giri/min $\Rightarrow n \cdot 60$ $\left(\frac{giri}{h}\right)$ è il numero di giri/h dell'albero motore
- poiché il motore è a 4 tempi un ciclo si completa ogni 2 giri dell'albero motore, pertanto il numero di cicli ogni ora vale: $\frac{n \cdot 60}{2} = \frac{115 \times 60}{2} = 3450 \frac{cicli}{h}$

Il rapporto tra il consumo orario di un cilindro e il numero di cicli all'ora rappresenta proprio la MASSA DI COMBUSTIBILE INIETTATO IN OGNI CICLO

$$m_c = \frac{\frac{G_h}{z}}{cicli\ in\ 1\ ora} = \frac{\frac{212}{6}\ \frac{kg}{h \times cilindro}}{3450\ \frac{cicli}{h}} = 0,01024\ \frac{kg}{ciclo \times cilindro}$$

Questo dato ci tornerà utile anche per dimensionare la pompa d'iniezione.

Pertanto il RENDIMENTO INDICATO vale

$$\eta_i = \frac{L_i}{Q_1} = \frac{p_{mi} \cdot V}{m_c \cdot Pci} = \frac{618000 \ Pa \times 0,29436 \ m^3}{0,01024 \ kg \times 429000000 \ \frac{J}{kg}} = 0,414$$

e il rendimento globale del motore vale: $\eta_{_g} = \eta_{_i} \cdot \eta_{_m} = 0.414 \times 0.85 \cong 0.352$

> Calcolo del consumo specifico di combustibile

Direttamente dalle espressioni note:
$$q_b = \frac{G_h}{P_e} = \frac{212 \frac{kg}{h}}{889 \text{ kW}} = 0,238 \frac{kg}{kW \cdot h}$$
 oppure
$$q_b = \frac{1}{\eta_g \cdot Pci} = \frac{1}{0,352 \times 42900 \frac{kJ}{kg}} = 0,00006622 \frac{kg}{kJ}; \quad q_b = 0,00006622 \frac{kg}{kJ} \times 3600 = 0,238 \frac{kg}{kW \cdot h}$$

> Calcolo della massa di gasolio per ciclo

Essendo 6 i cilindri da alimentare in ogni ciclo, la massa di gasolio per ciclo sarà uguale alla massa di gasolio per ciclo e per cilindro, per il numero di cilindri, pertanto

$$m_{gasolio} = z \cdot m_c = 6 \times 0.01024 \frac{kg}{ciclo \times cilindro} = 0.06144 \frac{kg}{ciclo}$$
 per TUTTI I CILINDRI

Dimensionamento di massima della pompa d'iniezione

Per l'elevata pressione che devono conferire al gasolio sono di tipo alternativo; inoltre ogni pompa alimenta 1 cilindro, per cui tutti i ragionamenti si devono impostare per un singolo cilindro. Nota la massa di gasolio (**liquido incomprimibile**) $m_c = 0.01024 \text{ kg}$ da iniettare per ogni ciclo, se ne può calcolare il VOLUME, infatti ipotizzando per il gasolio una massa volumica $\rho_{gasolio} = 900 \frac{kg}{m^3}$

il volume vale
$$V_{gasolio} = \frac{m_c}{\rho_{gasolio}} = \frac{0,01024 \text{ kg}}{900 \frac{\text{kg}}{m^3}} = 1,14 \times 10^{-5} \text{ m}^3 = 11,4 \text{ cm}^3$$

La pompa d'iniezione per ogni corsa che effettua (che corrisponde a 4 corse dello stantuffo, cioè 1 ciclo) dovrà erogare un volume di gasolio di $11,4~{\rm cm}^3$ e tale volume deve essere uguale alla cilindrata V_{POMPA} della pompa, quindi

$$V_{gasolio} = 11,4 \text{ cm}^3 = V_{POMPA} = \frac{\pi \cdot d^2}{4} \cdot s$$
 con
$$\begin{cases} d = alesaggio \ POMPA \\ s = corsa \ del \ suo \ pistone \end{cases}$$

Fissando il rapporto $\frac{s}{d} = 1,2 \implies s = 1,2 d$ e sostituendo nell'espressione della cilindrata si calcola L'ALESAGGIO DELLA POMPA

11,4 cm³ =
$$\frac{\pi \cdot d^3}{4} \cdot 1,2 \rightarrow d = \sqrt[3]{\frac{4 \times 11,4 \text{ cm}^3}{3,14 \times 1,2}} \cong 2,3 \text{ cm}$$

e quindi la CORSA DEL PISTONE $s = 1,2 d = 1,2 \times 2,3 cm \cong 2,8 cm$